• Users Online: 2782
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2019  |  Volume : 8  |  Issue : 1  |  Page : 13-17

Investigation on the effects of Bactenecin on POPC membrane in atomistic details using molecular dynamics simulation


1 Department of Biochemistry, Sanandaj Branch Islamic Azad University, Sanandaj, Iran
2 Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
3 Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
4 Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran

Correspondence Address:
Mohsen Shahlaei
Medical Biology Research Center, Kermanshah University of Medical Sciences, 67346-67149 Kermanshah
Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jrptps.jrptps_45_18

Rights and Permissions

Background: Traditional antimicrobial agents are losing their efficiency as microbial resistance increases. Thus, developing antimicrobial peptides (AMPs) can assist as an alternative approach. For AMPs, the hypothesis mode of action is involved in pore formation within the lipid membrane, thereby leading to cell death. In this study, interaction between Bactenecin and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) was studied. Methods: For this purpose, two systems, Bactenecin in water and Bactenecin in POPC were treated by 50 ns of molecular dynamic simulation and data were compared with those of free POPC. Results: The results suggest that the interaction between Bactenecin and bilayer membrane cause some disorder and more instability along with little compactness of bilayer. The hydrogen bond between peptide and heads of lipid components may is main reason of membrane compactness. The results can provide some information on how to Bactenecin or other such peptides affect bio-membranes.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed5183    
    Printed398    
    Emailed0    
    PDF Downloaded522    
    Comments [Add]    

Recommend this journal