ORIGINAL ARTICLE |
|
Year : 2019 | Volume
: 8
| Issue : 2 | Page : 253-261 |
|
Development of docetaxel-loaded folate-modified Poly(lactic-co-glycolic acid) particles
Yuri I Poltavets1, Vasilisa V Zavarzina1, Sergey L Kuznetsov1, Anna A Krasheninnikova1, Danil O Dronov1, Nadezhda V Gukasova1, Valentina G Shuvatova1, Vadim Yu Balabanyan2
1 Laboratory of Nanocapsules and Targeted Delivery of Drugs, National Research Centre “Kurchatov Institute”, Moscow, Russia 2 Department of Pharmaceutical technology, Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
Correspondence Address:
Mr. Yuri I Poltavets Laboratory of Nanocapsules and Targeted Delivery of Drugs, National Research Centre, “Kurchatov Institute”, Moscow. Russia
 Source of Support: None, Conflict of Interest: None  | Check |
DOI: 10.4103/jrptps.JRPTPS_64_19
|
|
Background: Poly(lactic-co-glycolic acid) (PLGA) particles with small vector molecules are used for targeted delivery of anticancer agents. To be effective, they must be small, noncytotoxic, sterile, and stable. Aim: The aim of this study was to prepare docetaxel-loaded folate-modified PLGA-based nanoparticles (FD-Dtx-NPs) and to assess their as parenteral folate-receptor targeted delivery systems during γ-sterilization and long-term storage. Materials and Methods: NPs were prepared by oil/water single emulsion-solvent evaporation method and simultaneous loading of polymer particles with docetaxel and folic acid derivative. NPs’ physicochemical characteristics and antitumor activity were assessed. Findings: FD-Dtx-NPs presented uniform characteristics over repeated measurements: ~250 nm size, <0.100 polydispersity index, and >2.5% docetaxel content in the finished lyophilizate. The observed slow docetaxel release from FD-Dtx-NPs was acceptable for proposed usage. γ-irradiated NPs were sterile under all tested protocols and maintained their physicochemical properties at a 10-kGy cumulative dose, 0.500 Gy/s dose rate, and 5.57-h exposure. No significant differences were observed in physicochemical characteristics of FD-Dtx-NPs over 12 months. Finally, FD-Dtx-NPs showed a high anticancer activity in vitro. Conclusion: The proposed method generates FD-Dtx-NPs with reproducible characteristics, high activity, and elevated stability during the long-term storage. Results of γ-sterilization and stability studies may be valuable for the development of polymer-based drugs. |
|
|
|
[FULL TEXT] [PDF]* |
|
 |
|